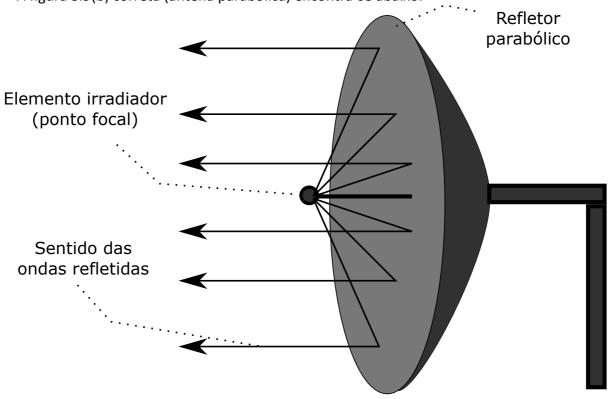
Errata livro "Comunicação Móvel Celular", Elsevier, 2018

Francisco Rodrigo Porto Cavalcanti et. al.

Capítulo 2

Exemplo 2.5, solução página 51

b)
$$P_{N_{dBW}}=-104,86~dBW$$
; $P_{N_{dBm}}=P_{N_{dBW}}+30=-74,86~dBm$
$$P_{N_W}=10^{\left(P_{N_{dBW}}/10\right)}=3,26\times10^{-11}W$$


c)
$$P_{R_{dBm}} = -20 \ dBm; SNR_{Out_{dB}} = 54,86 dB$$

d)
$$P_{R_{dBm}} = 15 + (-74,86) = -59,86dBm$$

Capítulo 3

Página	Linha	Onde se lê	Leia-se
76	23	pelo radio R	pelo raio R
79	13	é um medida	é uma medida
80	Figura 3.4 (a)	Padrão de elevação	Padrão de zênite
81	3	não há muito pouca	há muito pouca
88	Figura 3.9 (b)	*	*
89	Figura 3.10	direcionadores	diretores

* A figura 3.9(b) correta (antena parabólica) encontra-se abaixo:

Capítulo 4

Página 136, 1º linha: onde se lê Γ_t =1,9 leia-se γ_t =1,9.

Página 144, 6ª linha do quadro cinza: onde há $\sqrt{7R}$ leia-se $\sqrt{7R}$ (a variável "R" fica fora da raiz quadrada)

Capítulo 8

Complemento da bibliografia do capítulo:

- [21] Cardieri, P. (2000) Resource Allocation and Adaptive Antennas in Cellular Communications. Tese de doutorado, Virginia Tech.
- [22] Frank, T.; Klein, A.; Costa, E. (2007) IFDMA: A Scheme Combining the Advantages of OFDMA and CDMA. IEEE Wireless Communications, v. 14, n. 3, p. 9-17, junho.
- [23] Godara, L. C. (1997) Application of antenna arrays to mobile communications. II. Beamforming and direction-of-arrival considerations. Proceedings of the IEEE, v. 85, n. 8, p. 1195–1245, agosto.
- [24] Kaiser, T.; Bourdoux, A.; Boche, H.; Fonollosa, J.R.; Andersen, J.B.; Utschick, W. (2005) Smart Antennas: State of the Art (Eurasip Book Series on Signal Processing & Communications). Hindawi Publishing Corporation.
- [25] Larsson, E.G.; Edfors, O.; Tufvesson, F.; Marzetta, T.L. (2014) Massive MIMO for next generation wireless systems. IEEE Communications Magazine, v. 52, n. 2, p. 186-195, fevereiro.
- [26] Liberti Jr., J.C.; Rappaport, T.S. (1998) Smart Antennas for Wireless Communications. Prentice Hall.
- [27] Shafi, M.; Molisch, A.F.; Smith, P.J.; Haustein, T.; Zhu, P.; Silva, P.D.; Tufvesson, F.; Benjebbour, A.; Wunder, G. (2017) 5G: A Tutorial Overview of Standards, Trials, Challenges, Deployment, and Practice. IEEE Journal on Selected Areas in Communications, v. 35, n. 6, p. 1201-1221, junho.

Cap. 10

Página 328, linha 10: onde se lê o símbolo grego gama minúsculo (γ) leia-se o símbolo grego lambda minúsculo (λ)

Equação 10.5: $\lambda = 1 - e^{-\tau/T_a}$